sábado, 30 de junio de 2012


INTRODUCCION A LA PARADOJA DE LOS MUSICOS SIDERALES

En 1905 un desconocido físico alemán llamado Albert Einstein publicó un artículo que cambiaría radicalmente el significado de conceptos como “espacio” y “tiempo”. Lo conocemos como Teoría de la Relatividad Especial. Esta teoría se apoya en el principio de relatividad y en la constancia de la velocidad de la luz en cualquier sistema de referencia inercial.  Permitió establecer una equivalencia entre “masa” y “energía”,  y redefinir el concepto del “espacio-tiempo”. De ella se derivaron predicciones y, por supuesto, surgieron algunas curiosidades. Una de las más desconcertantes es que un observador vea que un cuerpo en movimiento posee una longitud más corta que la que tiene en reposo. Otra, que la duración de los eventos que afectan a un cuerpo en movimiento son más largos con respecto al mismo evento medido por un observador que se encuentra en el sistema de referencia del cuerpo en reposo. Dejando las matemáticas de lado, la Relatividad Especial nos dice que el tiempo se ralentiza con la velocidad.
Esto da lugar a la famosa “paradoja de los gemelos”
La paradoja de los gemelos (o paradoja de los relojes), propuesta por Albert Einstein, es un experimento mental que analiza la distinta percepción del tiempo entre dos observadores con diferentes estados de movimiento. Los protagonistas son dos gemelos, y el primero de ellos hace un viaje en una nave espacial a velocidades cercanas a la velocidad de la luz. El otro se queda en la Tierra. Al regresar, el viajero es más joven que el gemelo terrestre debido a los efectos de la Teoría Especial de la Relatividad. Pero desde el punto de vista del viajero, el que se mueve alejándose es el que quedó en la Tierra, y el gemelo de la nave es quien tendría que envejecer más rápido. ¿Cómo se resuelve la paradoja?


    PARADOJA:   MÚSICOS SIDERALES

Marlon y Rocío son dos hermanos que forman un dúo de músicos muy talentosos que  tienen muchas cosas en común, entre otras, haber nacido el mismo día y el mismo año. Existe entre ellos un sentimiento fraternal que les ha permitido alcanzar un buen nivel de comprensión, tanto en el plano familiar como profesional.
El día en que ambos cumplen 20 años, Marlon recibe la noticia de haber sido contratado en excelentes condiciones económicas para tocar en una importante banda de rock universal. El detalle del contrato consiste en que el lugar de trabajo está ubicado en un planeta que se encuentra a 8 años luz de la tierra, motivo por el cual se produce una obligada separación entre los dos.
Rocío, que además de la música muestra mucho interés por temas referidos a la Física, ha conseguido la información de que la compañía de viajes interestelares “APOCALIPSIS”, que llevará de viaje a Marlon, atravesará el espacio a una velocidad de crucero igual a  0,8c ( “c” es la velocidad de la luz en el vacío) y que además el viaje durará 6 años.
Esto ha llamado poderosamente la atención de Rocío, pues sus conocimientos de Mecánica Clásica le han permitido calcular que este viaje debería durar 10 años.
El carácter inquieto de Rocío le ha llevado a consultar sus predicciones con el personal de vuelo, quienes le han ratificado en todas las formas que el viaje, efectivamente, durará 6 años.
¿Cómo se explica que este viaje emplee menos tiempo de lo que le corresponde?
Al despedirse, Marlon le propone a Rocío enviarse mutuamente señales de luz cuando cumplan años. Si al llegar al lejano planeta Marlon decide emprender el retorno de forma inmediata, el número de señales recibidas por ambos hasta el instante del reencuentro, ¿será  exactamente el mismo?

  FORMULACIÓN DEL PROBLEMA:


En la enunciación más habitual de la paradoja, se toma como protagonistas a dos gemelos (de ahí el nombre); el primero de ellos hace un largo viaje a una estrella en una nave espacial a velocidades cercanas a la velocidad de la luz; el otro gemelo se queda en la Tierra. A la vuelta, el gemelo viajero es más joven que el gemelo terrestre.
De acuerdo con la teoría especial de la relatividad, y según su predicción de la dilatación del tiempo, el gemelo que se queda en la Tierra envejecerá más que el gemelo que viaja por el espacio a gran velocidad (más adelante se prueba esto mediante cálculo) porque el tiempo propio del gemelo de la nave espacial va más lento que el tiempo del que permanece en la Tierra y, por tanto, el de la Tierra envejece más rápido que su hermano.
Pero la paradoja surge cuando se hace la siguiente observación: visto desde la perspectiva del gemelo que va dentro de la nave, el que se está alejando, en realidad, es el gemelo en la Tierra (de acuerdo con la Invariancia galileana) y, por tanto, cabría esperar que, de acuerdo con los cálculos de este gemelo, su hermano en la Tierra fuese quien tendría que envejecer menos por moverse respecto de él a velocidades cercanas a la de la luz. Esto es, el gemelo de la nave es quien tendría que envejecer más rápido.
La paradoja quedaría dilucidada si se pudiese precisar quién envejece más rápido realmente y qué hay de erróneo en la suposición de que, de acuerdo con los cálculos del gemelo de la nave, es el gemelo terrestre quien envejece menos.

domingo, 24 de junio de 2012

El Principio de Equivalencia
Ya se están preparando experimentos en el espacio para poder determinar variaciones en el Principio de Equivalencia, uno de los pilares de la física.


Parado sobre la Luna, en 1971, el astronauta Dave Scott, del Apolo 15, tomó un martillo en una mano y una pluma en la otra y los colocó a la altura de sus hombros. Después, mientras el mundo veía la trasmisión en vivo a través de la televisión, los soltó.

see captionFue una imagen inusual: la pluma no se balanceó al caer, sino que lo hizo abruptamente, tan rápido como el martillo. Sin la resistencia del aire para detener la pluma, ambos objetos llegaron al suelo lunar al mismo tiempo.

"¡Vaya, vaya!", exclamó Scott. "El Sr. Galileo tenía razón".


Derecha: El astronauta Dave Scott deja caer una pluma y un martillo en la Luna. [Video] [Transcripcción de la grabación]

Scott se refería a un famoso experiemento del siglo XVI. Según quién cuente la historia, se dice que Galileo Galilei dejó caer balas desde la parte más alta de la Torre Inclinada de Pisa o que hizo rodar las balas sobre planos inclinados en su casa. De cualquier forma, el resultado fue el mismo: Aunque las balas estaban hechas de diferentes materiales, todas llegaron al piso al mismo tiempo.
En la actualidad, a esto se lo conoce como el "Principio de Equivalencia". La gravedad acelera todos los objetos de igual manera, independientemente del valor de sus masas o de los materiales con los cuales están constituidos. A esto se lo considera una piedra angular de la física moderna.
Pero, ¿qué tal si el Principio de Equivalencia (EP, por su sigla en inglés) está equivocado?
Los experimentos de Galileo tenían una precisión de sólo el 1%, lo cual deja lugar a dudas. Desde entonces, algunos físicos escépticos han realizado experimentos para poner a prueba el EP. Los mejores límites modernos, basados, por ejemplo, en el cálculo con láser de la distancia Tierra-Luna, y destinados a medir la velocidad con la que dicho láser cae a la Tierra, muestran que el EP se mantiene dentro de un margen de unas pocas partes en un billón (1012). Esto es fantásticamente preciso; sin embargo, existe la posibilidad de que el Principio de Equivalencia pueda fallar en un nivel algo más imperceptible.
"Es una posibilidad que debemos investigar", dice el físico Clifford Will, de la Universidad de Washington, en St. Louis, Missouri. "Descubrir siquiera la más mínima diferencia de cómo actúa la gravedad en objetos de diferentes materiales tendría grandes implicancias".
De hecho, podría mostrar la primera evidencia sólida de la teoría de cuerdas. De manera elegante, la teoría de cuerdas presenta a las partículas fundamentales como diferentes tipos de vibración que pueden tener cuerdas infinitesimales, resolviendo de esta manera muchos problemas que persisten en la física moderna. Pero la teoría de cuerdas es muy controvertida, en parte porque la mayoría de sus predicciones son virtualmente imposibles de verificar con experimentos. Si no es posible poner algo a prueba, entonces no es ciencia.

see captionEl Principio de Equivalencia podría ofrecer una manera de poner a prueba la teoría de cuerdas.
"Algunas variantes de la teoría de cuerdas predicen la existencia de una fuerza muy débil que haría que la fuerza de gravedad fuera ligeramente distinta dependiendo de la composición del objeto sobre el que actuara", comenta Will. "Hallar una variación en la fuerza de gravedad para diferentes materiales no probaría inmediatamente que la teoría de cuerdas es correcta, pero proporcionaría una 'dosis' de evidencia a su favor".

Derecha: Pruebas modernas del Principio de Equivalencia. La figura está basada en un diagrama similar de un artículo de revisión de Physics World.


Esta nueva faceta de la gravedad, si es que existe, sería tan asombrosamente débil que tratar de detectarla representa un gran reto. La gravedad en sí es una fuerza relativamente débil -es un billón de billones de billones (1036) de veces más débil que la fuerza electromagnética. Los físicos teóricos piensan que la nueva fuerza sería, al menos, 10 billones (1013) de veces más débil que la gravedad.
Así como el magnetismo actúa sobre objetos hechos de hierro pero no en aquellos de plástico, la nueva fuerza no afectaría a toda la materia de igual forma. La atracción de la fuerza variaría según el material con que esté hecho el objeto.
Por ejemplo, algunas versiones de la teoría de cuerdas sugieren que esta nueva fuerza interactuaría con la energía electromagnética del material. Dos átomos que tienen la misma masa pueden tener diferentes cantidades de energía electromagnética si, por ejemplo, uno de ellos tiene más protones, los cuales poseen carga eléctrica, mientras que el otro tiene más neutrones, que no poseen carga eléctrica. La gravedad tradicional atraería a ambos átomos de igual forma, pero si la gravedad incluye esta nueva fuerza, la atracción sobre estos dos átomos sería levemente distinta.
Hasta la fecha, ningún experimento ha detectado esta pequeña diferencia. Pero ahora tres grupos de científicos están proponiendo misiones espaciales que buscarían este efecto con una sensibilidad superior a cualquier otra que se haya registrado.
"Lo que se quiere hacer es tomar dos masas de prueba compuestas por diferentes materiales y buscar pequeñas diferencias en la velocidad a la que caen", comenta Will. "En la Tierra, un objeto solamente puede caer por un periodo muy corto antes de llegar al suelo. Pero un objeto en órbita está cayendo literalmente alrededor de la Tierra, de manera que puede caer continuamente por un largo tiempo". Las pequeñas diferencias en la atracción de la gravedad se acumularían con el tiempo, tal vez aumentando lo suficiente como para que se las pueda detectar.

see captionUna misión de prueba, llamada Prueba Satelital del Principio de Equivalencia (STEP, por su sigla en inglés), está siendo desarrollada por la Universidad de Stanford y un grupo internacional de colaboradores. STEP sería capaz de detectar una desviación del Principio de Equivalencia de apenas una parte en un millón de billones (1018). Esto es 100.000 veces más sensible que las mejores mediciones disponibles en la actualidad.


Derecha: Concepto artístico del proyecto STEP en órbita. [Más información]



En el diseño de STEP se usan cuatro pares de masas en lugar de solamente un par. La redundancia sirve para asegurar que cualquier diferencia detectada en la forma en que caen las masas es realmente causada por una violación del Principio de Equivalencia, y no por alguna otra perturbación o imperfección en los equipos.
"Al tratar de medir un efecto tan pequeño, es necesario eliminar tantas perturbaciones externas como sea posible", explica Will. En el diseño de STEP, las masas de prueba se ubican dentro de un gran tanque de helio líquido para aislarlas de fluctuaciones externas de temperatura y se las rodea con una armadura superconductora con el fin de protegerlas de interferencias eléctricas y magnéticas. Los microactivadores contrarrestan los efectos de arrastre atmosférico en la órbita del satélite, haciendo que la caída libre de las masas sea casi perfecta.
En este ambiente tan bien regulado, cada par de masas de prueba debe permanecer perfectamente alineado con los demás mientras caen alrededor de la Tierra —esto siempre y cuando el Principio de Equivalencia se cumpla. Pero si este nuevo componente de la gravedad realmente existe, una masa caerá a una velocidad levemente distinta de la de su compañera, de modo que el par irá perdiendo ligeramente la alineación con el paso del tiempo.
Actualmente, STEP se encuentra en fase de desarrollo. Además, investigadores franceses están desarrollando otro experimento satelital, el Microsatélite Adaptado para la Observación del Principio de Equivalencia (MICROSCOPE, por su sigla en francés), el cual planean lanzar en 2010. MICROSCOPE, tendrá dos pares de masas de prueba en lugar de cuatro y podrá detectar desviaciones del Principio de Equivalencia tan pequeñas como una parte en mil billones (1015).

El tercer experimento es el satélite italiano Galileo Galilei ("GG", su nombre corto), que trabajará de manera muy similar a STEP y a MICROSCOPE, excepto que utilizará sólo un par de masas de prueba.

Para mejorar su precisión, el satélite Galileo Galilei girará alrededor de su propio eje central con una velocidad de 2 rotaciones por segundo. De esta forma, si se produjeran alteraciones en el satélite, éstas actuarán en todas direcciones de igual manera, cancelándose entre sí. El experimento debe ser capaz de lograr una sensibilidad de una parte en cien mil billones (1017).

Es difícil afirmar que alguna de estas misiones podrá detectar alguna violación del Principio de Equivalencia. Will comenta que espera que los experimentos no hallen ninguna desviación, en parte porque hallar alguna sería una gran revolución para la física moderna. La teoría de cuerdas propone un rango de predicciones acerca de qué tan fuerte sería esta nueva fuerza, entonces es posible que el efecto sea tan pequeño que no pueda ser detectado incluso con intrumentos espaciales como estos.
Aun si no se encontrará desviación alguna, esto sería de gran ayuda: descartaría ciertas variantes de la teoría de cuerdas, lo que conduciría a los físicos hacia la correcta "Teoría del Todo". Sin embargo, encontrar una desviación, por pequeña que sea, sería un gran paso.

martes, 13 de diciembre de 2011

Energías Renovables

Las energías renovables son aquellas que se producen de forma continua y son inagotables. El sol está en el origen de la mayoría de ellas porque su energía provoca en la Tierra las diferencias de presión que generan los vientos, fuente de la energía eólica. El sol ordena el ciclo del agua que da origen a la energía hidráulica. Las plantas se sirven del sol para realizar la fotosíntesis, vivir y crecer. Toda esa materia vegetal es la biomasa. Por último, el sol se aprovecha directamente en dos formas térmica y fotovoltaica.
Las energías renovables son, además, fuentes de energía amigables con el medio ambiente. La generación y el consumo de las energías convencionales causan importantes efectos negativos en el entorno. Las energías renovables no producen emisiones de CO2 y otros gases contaminantes a la atmósfera, Asimismo las energías renovables son fuentes autóctonas, por lo que las renovables disminuyen la dependencia de la importación de combustibles.
Las fuentes renovables de energía que consideramos se pueden aprovechar en el país, son:

  • Energía solar:
    • Fotovoltaica 
    • Térmica
  • Energía eólica
  • Energía hidráulica
  • Energía de la biomasa (Bioenergía)
  • Energía geotérmica

Como aprovechamos la energía del Sol

Básicamente, recogiendo de forma adecuada la radiación solar, podemos obtener calor y electricidad.
El calor se logra mediante los captadores o colectores térmicos, y la electricidad, a través de los llamados módulos fotovoltaicos. Ambos procesos nada tienen que ver entre sí, ni en cuanto a su tecnología ni en su aplicación.
Hablemos primero de los sistemas de aprovechamiento térmico. El calor recogido en los colectores puede destinarse a satisfacer numerosas necesidades. Por ejemplo, se puede obtener agua caliente para consumo doméstico o industrial, o bien para dar calefacción a nuestros hogares, hoteles, colegios, fábricas, etc. Incluso podemos climatizar las piscinas y permitir el baño durante gran parte del año.
También, y aunque pueda parecer extraño, otra de las más prometedoras aplicaciones del calor solar será la refrigeración durante las épocas cálidas .precisamente cuando más soleamiento hay. En efecto, para obtener frío hace falta disponer de una «fuente cálida», la cual puede perfectamente tener su origen en unos colectores solares instalados en el tejado o azotea. En los países árabes ya funcionan acondicionadores de aire que utilizan eficazmente la energía solar.
Las aplicaciones agrícolas son muy amplias. Con invernaderos solares pueden obtenerse mayores y más tempranas cosechas; los secaderos agrícolas consumen mucha menos energía si se combinan con un sistema solar, y, por citar otro ejemplo, pueden funcionar plantas de purificación o desalinización de aguas sin consumir ningún tipo de combustible.
Las «células solares», dispuestas en paneles solares, ya producían electricidad en los primeros satélites espaciales. Actualmente se perfilan como la solución definitiva al problema de la electrificación rural, con clara ventaja sobre otras alternativas, pues, al carecer los paneles de partes móviles, resultan totalmente inalterables al paso del tiempo, no contaminan ni producen ningún ruido en absoluto, no consumen combustible y no necesitan mantenimiento. Además, y aunque con menos rendimiento, funcionan también en días nublados, puesto que captan la luz que se filtra a través de las nubes.
La electricidad que así se obtiene puede usarse de manera directa (por ejemplo para sacar agua de un pozo o para regar, mediante un motor eléctrico), o bien ser almacenada en acumuladores para usarse en las horas nocturnas. También es posible inyectar la electricidad generada en la red general, obteniendo un importante beneficio.
Si se consigue que el precio de las células solares siga disminuyendo, iniciándose su fabricación a gran escala, es muy probable que, para la segunda década del siglo, una buena parte de la electricidad consumida en los países ricos en sol tenga su origen en la conversión fotovoltaica.
La energía solar puede ser perfectamente complementada con otras energías convencionales, para evitar la necesidad de grandes y costosos sistemas de acumulación. Así, una casa bien aislada puede disponer de agua caliente y calefacción solares, con el apoyo de un sistema convencional a gas o eléctrico que únicamente funcionaría en los periodos sin sol. El coste de la «factura de la luz» sería sólo una fracción del que alcanzaría sin la existencia de la instalación solar.